5x^2-4x=7-(2x^2-3x-4)

Simple and best practice solution for 5x^2-4x=7-(2x^2-3x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x^2-4x=7-(2x^2-3x-4) equation:



5x^2-4x=7-(2x^2-3x-4)
We move all terms to the left:
5x^2-4x-(7-(2x^2-3x-4))=0
We calculate terms in parentheses: -(7-(2x^2-3x-4)), so:
7-(2x^2-3x-4)
determiningTheFunctionDomain -(2x^2-3x-4)+7
We get rid of parentheses
-2x^2+3x+4+7
We add all the numbers together, and all the variables
-2x^2+3x+11
Back to the equation:
-(-2x^2+3x+11)
We get rid of parentheses
5x^2+2x^2-3x-4x-11=0
We add all the numbers together, and all the variables
7x^2-7x-11=0
a = 7; b = -7; c = -11;
Δ = b2-4ac
Δ = -72-4·7·(-11)
Δ = 357
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{357}}{2*7}=\frac{7-\sqrt{357}}{14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{357}}{2*7}=\frac{7+\sqrt{357}}{14} $

See similar equations:

| s²+4s–21=0 | | y²+5y-36=0 | | 8x²=6x+9 | | 3x-1+7=4x+2-6-3x | | 15^x=15 | | 3(b−4)+5b=44= | | (3x+14)=28 | | 102/x=0.4 | | 2x+14=65-15x | | 4(2x–3)–37=5(4-3x) | | -8x-144=180+10x | | 28-3c=15 | | w²-7w-44=0 | | -12x-22=-9x+53 | | Σ∞n=110(1/2)n-1 | | d-3÷4=11 | | -b^2+30b-216=0 | | 2x=(4x+24) | | 39=b-24 | | a+24=39 | | x*0.3=13.5 | | 2(2x+5)=8-(3x-9) | | r-2=5r-6 | | 2(2x-5)=8-(3x-9) | | 3(y+4)/y-4=7 | | 350=950(1-d) | | x2+15=8x | | 6+6x=-6+3x | | x²=400 | | 5x+14=18-3x | | 1.44=0.36+x | | 2/(x+1)=9/(x+1) |

Equations solver categories